FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA

LABORATORIO DE TECNOLOGÍA DE MATERIALES

"TABLAS Y GRAFICAS PARA DISEÑO DE ELEMENTOS DE MÁQUINAS"

M. en I. Felipe Díaz del Castillo Rodríguez.

CUAUTITLÁN IZCALLI 2007

indice

INTRODUCCIÓN		
	<i>CAPITULO 1</i> ORÍAS DE FALLA Y FATIGA	
FLECHAS	CAPITULO 2	14
RESORTES	CAPÍTULO 3	18
ENGRANES	CAPÍTULO 4	23
TRANSMISIONES FLEXIBLES	CAPITULO 5	31
RODAMIENTOS	CAPITULO 6	39
FORMULARIO		49
BIBLIOGRAFÍA		54

INTRODUCCIÓN

Para el diseño y selección de elementos de máquinas tales como flechas, engranes, bandas, etc. se utilizan de manera extensiva tablas y gráficas que proporcionan asociaciones como ANSI, ASME, AGMA. NOM, etc. o los fabricantes de aceros, rodamientos, bandas, etc. y que es necesario tener a la mano, ya sea en el salón de clase o en el trabajo diario. De esta manera, se presenta una colección de tablas y gráficas que son básicas en el diseño de algunos elementos de máquinas, mostrándose en el orden en que se cubren los temas de acuerdo al programa actual de la asignatura "Diseño de elementos de máquinas" de la carrera de Ingeniero Mecánico Electricista que se imparte en la Fes-Cuautitlán, además, en esta edición, se proporciona un formulario básico para las materias de Fundamentos de Mecánica de Sólidos y Diseño de Elementos de Máquinas.

Cualquier sugerencia y corrección será bienvenida.

Atte.
Prof. Felipe Díaz del Castillo Rodríguez

1

<u>CAPÍTULO 1</u> <u>ESFUERZOS BÁSICOS, TEORÍAS DE FALLA Y FATIGA</u>

Tabla 1.1.- Propiedades típicas de los materiales mas comunes (Para fines de diseño real consulte reglamentos y especificaciones pertinentes

MATERIAL	RESIST MÁX		RESIST A LA FL	TENCIA UENCIA	MODULO DE ELASTICIDAD E	MODULO DE ELASTICIDAD G	α $cm/cm.^{\circ}C$ $(x\ 10^{-6})$
	kg/cm ²	ksi	kg/cm ²	ksi	kg/cm ²	kg/cm ²	
ACEROS:							
NOM-1018 T.F	4500	64	3800	54	2.1E6	0.808E6	11.8
NOM- 1045 T.C	6400	91	5400	77	"	"	11.8
NOM-1060 T.C	6900	98	3800	54	66	66	11.8
NOM-1075 T.C	7300	104	4100	58	66	66	11.8
NOM-4140 T.T	12000	170	11200	159	66	66	11.8
NOM-4340 T.T	12200	173	11500	163	66	66	11.8
INOX 304 REC.	5200	74	2100	30	1.96E6	0.735E6	16.0
<i>INOX. 316 REC.</i>	5200	74	2100	30	1.96E6	0.735E6	16.0
ESTRUCTURAL	4800	68	2250	36	2.1E6	0.808E6	11.8
ASTM A-36							
ALUMINIOS							
FORJADOS							
2014 -T4	4362	62	2885	41	0.741E6	0.281E6	23.1
2024-T4	4785	68	3370	48	66	"	23.1
6061-T6	3166	45	2800	40	"	"	23.1
ALEACIONES							
DE COBRE							
BRONCE T.F	7030	100	5270	75	1.195E6	0.450E6	18.3
MONEL T.C	6330	90	3520	50	1.82E6	0.68E6	14.0
LATON	3860	54.8	1750	24.8	1.124	0.421E6	20.0
OTROS:							
HIERRO GRIS ASTM-20	1470	20.9			1.05E6	0.422E6	10.8

T.F.- Trabajado en frío T.C.- Trabajado en caliente T.T.- Tratado térmicamente REC.- Recocido

Tabla 1.2.- Relación entre dureza y resistencia máxima de un acero

Dureza Brinell	Dur	eza Rock	well	σ_{max}	Dureza Brinell	Dur	eza Roc	kwell	σ_{max}
Bola de carburo de tungsteno 3000 kg	Escala A 60 kg	Escala B 100 kg	Escala C 150 kg	(Aprox.) psi	Bola de carburo de tungsteno 3000 kg	Escala A 60 kg	Escala B 100 kg	Escala C 150 kg	(Aprox.) psi
-	85.6	-	68.0	-	331	68.1	-	35.5	166,000
-	85.3	-	67.5	-	321	67.5	-	34.3	160,000
-	85.0	-	67.0	-	311	66.9	-	33.1	155,000
767	84.7	-	66.4	-	302	66.3	-	32.1	150,000
757	84.4	-	65.9	-	293	65.7	-	30.9	145,000
745	84.1	-	65.3	-	285	65.3	-	29.9	141,000
733	83.8	-	64.7	-	277	64.6	-	28.8	137,000
722	83.4	-	64.0	-	269	64.1	-	27.6	133,000
712	-	-	-	-	262	63.6	-	26.6	129,000
710	83.0	-	63.3	-	255	63.0	-	25.4	126,000
698	82.6	-	62.5	-	248	62.5	-	24.2	122,000
684	82.2	-	61.8	-	241	61.8	100.0	22.8	118,000
682	82.2	-	61.7	-	235	61.4	99.0	21.7	115,000
670	81.8	-	61.0	-	229	60.8	98.2	20.5	111,000
656	81.3	-	60.1	-	223	-	97.3	20.0	-
653	81.2	-	60.0	-	217	-	96.4	18.0	105,000
647	81.1	-	59.7	-	212	-	95.5	17.0	102,000
638	80.8	-	59.2	329,000	207	-	94.6	16.0	100,000
630	80.6	-	58.8	324,000	201	-	93.8	15.0	98,000
627	80.5	-	58.7	323,000	197	-	92.8	-	95,000
601	79.8	-	57.3	309,000	192	-	91.9	-	93,000
578	79.1	-	56.0	297,000	187	-	90.7	-	90,000
555	78.4	-	54.7	285,000	183	-	90.0	-	89,000
534	77.8	-	53.5	274,000	179	-	89.0	-	87,000
514	76.9	-	52.1	263,000	174	-	87.8	-	85,000
495	76.3	-	51.0	253,000	170	-	86.8	-	83,000
477	75.6	-	49.6	243,000	167	-	86.0	-	81,000
461	74.9	-	48.5	235,000	163	-	85.0	-	79,000
444	74.2	-	47.1	225,000	156	-	82.9	-	76,000
429	73.4	-	45.7	217,000	149	-	80.8	-	73,000
415	72.8	-	44.5	210,000	143	-	78.7	-	71,000
401	72.0	-	43.1	202,000	137	-	76.4	-	67,000
388	71.4	-	41.8	195,000	131	-	74.0	-	65,000
375	70.6	-	40.4	188,000	126	-	72.0	-	63,000
363	70.0	-	39.1	182,000	121	-	69.8	-	60,000
352	69.3	-	37.9	176,000	116	-	67.6	-	58,000
341	68.7	-	36.6	170,000	111	-	65.7	-	56,000

Tabla1.3.- Eficiencia máxima permisible de las juntas soldadas por arco y por gas (según ASME)

Tipo de unión	Eficiencia	Aplicación
Juntas a traslape con filete simple	45	Juntas cuerpo-tapa con espesores menores de5/8"
		Juntas cuerpo-tapa con diámetro exterior máximo de 24" y espesor de ¼".
	50	Juntas circunferenciales con espesor máximo de 1/8"
Juntas a traslape con filete doble	55	Juntas longitudinales con espesores menores de 3/8"
		Juntas circunferenciales con espesores menores de 5/8"
Uniones a tope simple sin cinta de retención	60	Juntas circunferenciales con espesores menores de 5/8"
Uniones a tope simple con cinta de retención	65 80 §	Juntas circunferenciales sin limitaciones
	90 † *	Junus encumerenciares sin immuerences
Uniones a tope doble	70	Sin limitaciones
	85 §	
	100 † *	

† Relevado de esfuerzos

§ Radiografiado por partes

* Radiografiado total

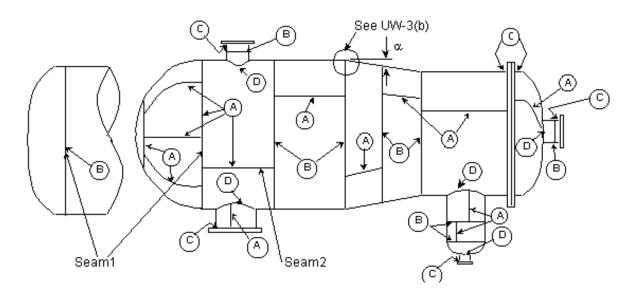


Figura 1.1.- Eficiencias en soldaduras.

Tabla1.4.- Centroide y momentos de inercia para las formas geométricas más comunes.

	comunes	i•	
Forma	Área	Centroide	Momento de inercia
			$I_{x'-x'}$
x' x' ×	A = b * h	$\overline{x} = \frac{b}{2}$ $\overline{y} = \frac{h}{2}$	$I = \frac{1}{12}bh^3$
×' ×' ×	$A = \frac{b * h}{2}$	$\overline{x} = 0$ $\overline{y} = \frac{1}{3}h$	$I = \frac{1}{36}bh^3$
× <u>'</u> (<u>c</u>)×'	$A = \frac{1}{4}\pi D^2$ $A = \pi R^2$	$\overline{x} = 0$ $\overline{y} = 0$	$I = \frac{\pi . D^4}{64}$
×' ×'>	$A = \frac{\pi R^2}{2}$	$\overline{x} = 0$ $\overline{y} = \frac{4.R}{3\pi}$	$I = 0.11.R^4$
×' CT ×'	$A = \frac{\pi . R^2}{4}$	$\bar{x} = \frac{4.R}{3\pi}$ $\bar{y} = \frac{4.R}{3\pi}$	$I = 0.055.R^4$
y x x x x x	$A = \frac{b * h}{2}$	$\overline{x} = \frac{1}{3}b$ $\overline{y} = \frac{1}{3}h$	$I = \frac{1}{36}bh^3$
a a	$A = \frac{a * h}{3}$	$\overline{x} = \frac{3a}{4}$ $\overline{y} = \frac{3h}{10}$	$I = \frac{8a^3b}{175}$

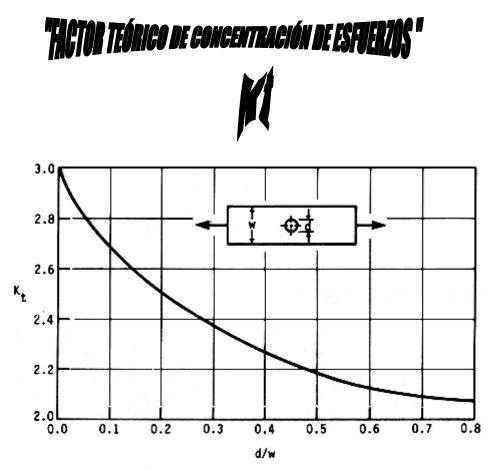


Figura 1.2- Placa con agujero transversal sometido a tensión axial

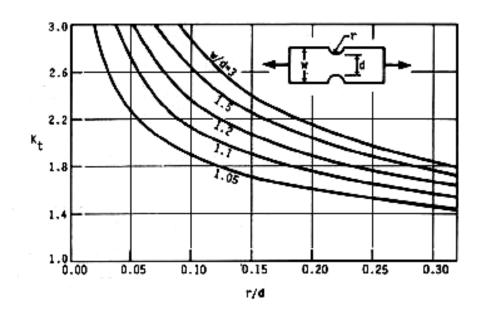


Figura 1.3.- Placa ranurada a tensión axial

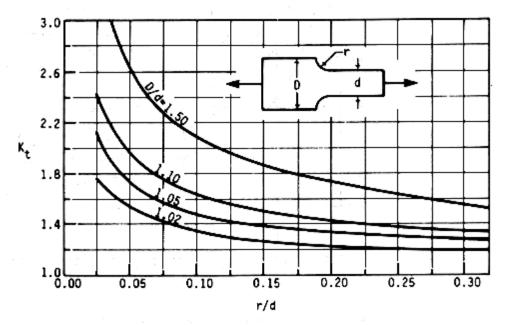


Figura 1.4.- Placa escalonada a tensión axial.

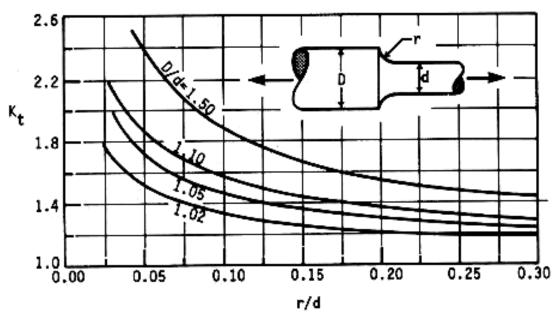


Figura 1.5.- Barra escalonada a tensión

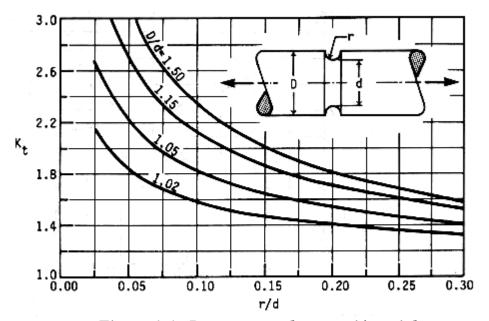


Figura 1.6.- Barra ranurada a tensión axial

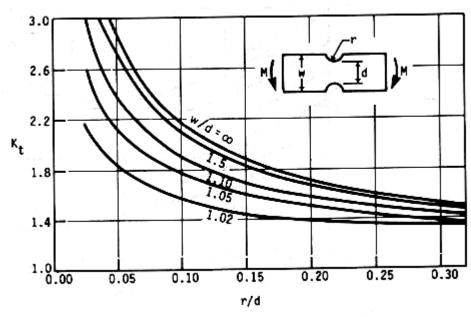


Figura 1.7.- Placa ranurada a flexión

Figura 1.8.- Placa escalonada a flexión.

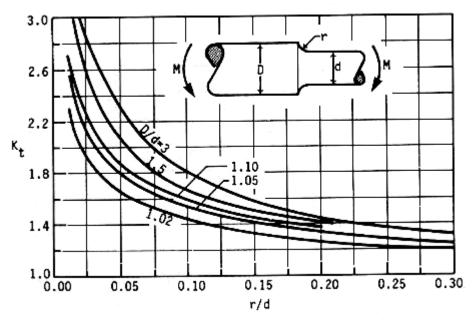


Figura 1.9.- Barra escalonada a flexión

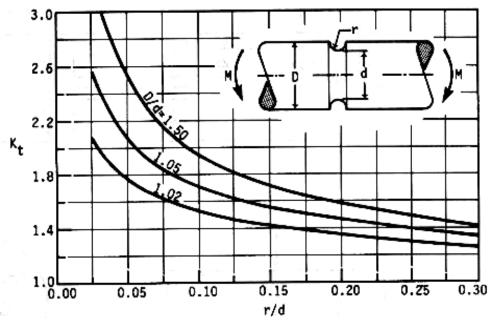


Figura 1.10.- Barra ranurada a flexión

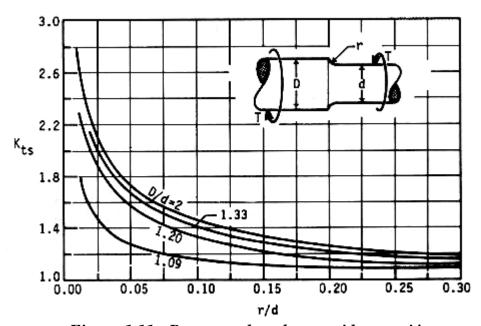


Figura 1.11.- Barra escalonada sometida a torsión

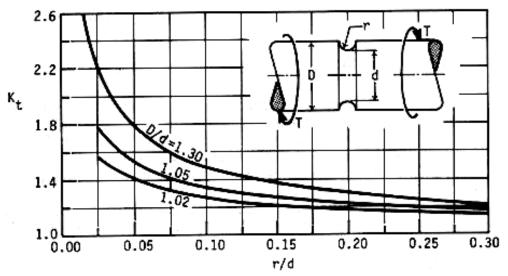


Figura 1.12.- Barra ranurada sometida a torsión.

Tabla 1.5.- Calculo del límite a la fatiga para diversos materiales y tipos de cargas.

Material	Flexión	Cargas axiales	Torsión
Aceros	σ_{e} , = $0.5 \sigma_{max}$	$\sigma_{e'} = 0.425 \sigma_{max}$	$\tau_{e'} = 0.25 \ \sigma_{max}$
Fundiciones de hierro	σ_{e} , =0.4 σ_{max}	$\sigma_{e'} = 0.34 \ \sigma_{max}$	$\tau_{e'} = 0.8 \sigma_{max}$
Aleaciones no ferrosas	$\sigma_{e'} = 0.3 \ \sigma_{max}$	σ_{e} = 0.255 σ_{max}	$ au_{e'} = 0.22 \sigma_{max}$

Donde:

 σ_{max} = resistencia máxima del material

Tabla 1.6.- Factor de corrección por tamaño (Kb)

	F ==
Tamaño (mm)	Kb
D ≤ 7.6	1
$7.6 \le D \le 50$	0.85
D ≥ 50	0.75

Tabla 1.7.- Factor de corrección por confiabilidad (Kc)

Confiabilidad (%)	Factor de corrección Kc
50	1.0
90	0.897
95	0.868
99	0.814
99.9	0.753
99.99	0.702

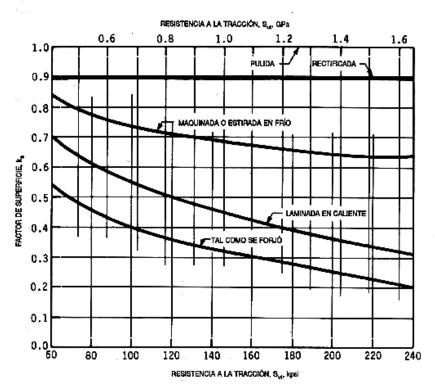


Figura 1.13.- Factor de corrección Ka de acabado superficial

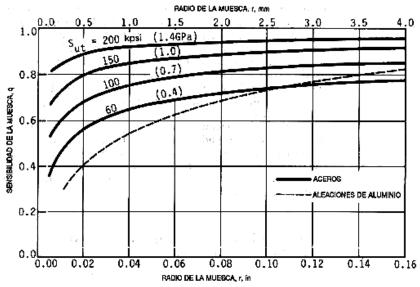


Figura 1.14.- Factor de sensibilidad a la entalladura q, para aceros y aluminio sometidos a flexión o cargas axiales alternantes.

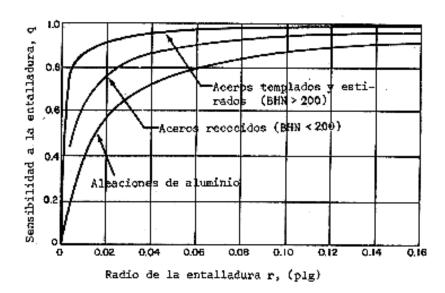


Figura 1.15.- Factor de sensibilidad a la entalladura, q, para aceros y aluminio sometidos a torsión alternante.

CAPÍTULO 2 FLECHAS

Tabla 2.1.- Factores de corrección Cm y Ct para el proyecto de flechas (según Código ASME)

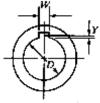
Naturaleza de la carga	Factor Cm	Factor Ct
Flechas estáticas		
Cargas estables	1.0	1.0
Cargas con impacto	1.5 – 2.0	1.5 –2.0
Flechas giratorias		
Cargas estables	1.5	1.0
Cargas con impacto moderado	1.5 – 2.0	1.0 – 1.5
Cargas con impacto pesado	2.0 – 3.0	1.5 – 3.0

Tabla 2.2.- Esfuerzos cortantes de cálculo, según ASME para árboles y flechas de acero.

Condiciones de carga	Esfuerzo cortante de cálculo (sin cuñero)	Esfuerzo cortante de cálculo (con cuñero)
Flechas sometidas a	$ au_{cal} = 0.30 \ x \ \sigma_f$	$ au_{cal} = 0.225 \ x \ \sigma_f$
flexión y torsión	$ au_{cal} = 0.18 \ x \ \sigma_{max}$	$\tau_{cal} = 0.135 \ x \ \sigma_{max}$
Flechas cometidas a flexión	$ au_{cal} = 0.6 \ x \ \sigma_f$	$ au_{cal} = 0.45 \ x \ \sigma_f$
jiexion	$ au_{cal} = 0.36x \ \sigma_{max}$	$ au_{cal} = 0.27 \ x \ \sigma_{max}$

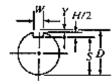
 σ_{max} = Resistencia máxima del material

 σ_f = resistencia a la fluencia del material


Tabla 2.3.- Factor de seguridad F.S para el diseño de flechas según Normas ANSI-ASME

Condiciones de carga	Factor de seguridad F.S
Cargas estables	2.0
Cargas con impacto moderado	3.0
Cargas con impacto fuerte	4.0

Tabla 2.4.- Factor teórico de concentración de esfuerzos Kt para diferentes condiciones


geométricas en flechas (según Normas ANSI-ASME)

Condición geométrica	Factor Kt
Cuñero de perfil	2.0
Cuñero de patín	1.6
Cambio de sección con radios de enlace pequeños	2.5
Cambios de sección con radios de enlace grandes	1.5
Ranuras	1.3


$$Y = \frac{D - \sqrt{D^2 - W^2}}{2}$$

(a) Altura de la cuerda

$$S = D - Y - \frac{H}{2} = \frac{D - H + \sqrt{D^2 - W^2}}{2}$$

(b) Profundidad del cuñero del eje

$$T = D - Y + \frac{H}{2} + C = \frac{D + H + \sqrt{D^2 - W^2}}{2} + C$$

Simbolos

C = Tolerancia

+0.005" de espaciamiento para cuñas paralelas -0.020" de interferencia para cuñas ahusadas

D = Diámetro nominal del eje o interior, pulg

H = Altura nominal de la cuña, pulg

W = Ancho d espesor nominal de la cuña, pulg

Y = Altura de la cuerda, pulg

Figura 2.1.- Dimensiones de cuñeros.

Tabla 2.5.- Tamaño de cuña contra tamaño de flecha.

DIÁMETRO N	OMINAL DE LA FL		Tamaño nominal	de la cuña
	(Pulg)	Altura H		
Mas de	Hasta (incluso)	Espesor, W	Cuadrada	Rectangular
5/16	7/16	3/32	3/32	
7/16	9/16	1/8	1/8	3/32
9/16	7/8	3/16	3/16	1/8
7/8	1 1/4	1/4	1/4	3/16
1 1/4	1 3/8	5/16	5/16	1/4
1 3/8	1 3/4	3/8	3/8	1/4
1 3/4	2 1/4	1/2	1/2	3/8
2 1/4	2 3/4	5/8	5/8	7/16
2 3/4	3 1/4	3/4	3/4	1/2
3 1/4	3 3/4	7/8	7/8	5/8
3 3/4	4 1/2	1	1	3/4
4 1/2	5 ½	1 1/4	1 1/4	7/8
5 ½	6 ½	$1\frac{1}{2}$	1 ½	1
6 1/2	7 ½	1 3/4	1 3/4	1 ½
7 ½	9	2	2	1 ½
9	11	$2\frac{1}{2}$	2 ½	1 3/4
11	13	3	3	2
13	15	3 ½	3 ½	2 ½
15	18	4		3
18	22	5		3 ½
22	26	6		4
26	30	7		5

Nota.- No se recomienda el uso de los valores que aparecen en las áreas sombreadas.

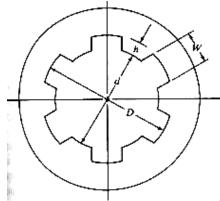
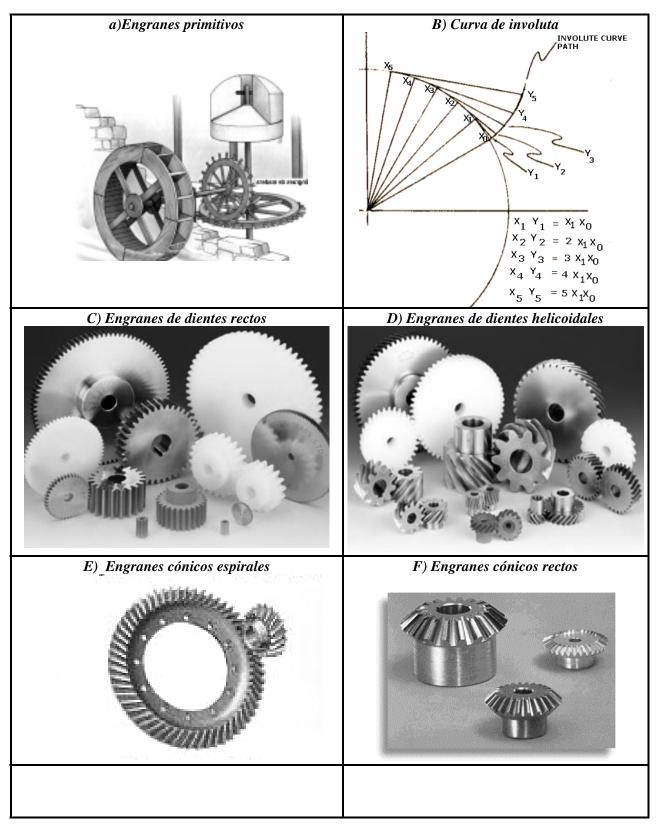



Figura 2.2. .- Ranuras de lados rectos

Tabla 2.6.- Fórmulas para ranuras SAE rectas

		Aju perma	iste	Para que se deslice Para que s sin carga si se somet			
Numero de ranuras	W para todos los ajustes	h	d	h	d	h	d
Cuatro	0.241 D	0.075 D	0.850 D	0.125 D	0.750 D	-	-
Seis	0.250 D	0.050 D	0.900 D	0.075 D	0.850 D	0.100 D	0.800 D
Diez	0.156 D	0.045 D	0.910 D	0.070 D	0.860 D	0.095 D	0.810 D
Diez y seis	0.098 D	0.045 D	0.910 D	0.070 D	0.860 D	0.095 D	0.810 D

<u>CAPITULO 4</u> <u>ENGRANES</u>

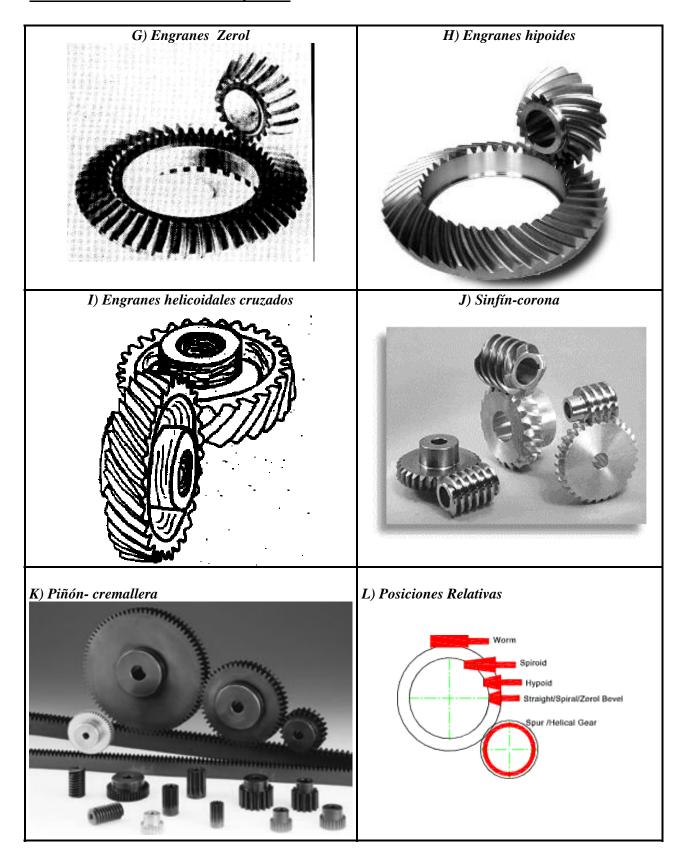


Figura 4.1.- Diferentes tipos de engranes

Tabla 4.1.- Engranes y sus principales características

TIPO	RELACIÓN DE TRANSMISIÓN	VELOCIDAD EN LA LÍNEA DE PASO (m/s)	RANGO DE EFICIENCIA
RECTOS	1:1 to 6:1	25	98-99%
HELICOIDALES	1:1 to 10:1	50	98-99%
DOBLE HELICOIDALES	1:1 to 15:1	150	98-99%
CÓNICOS	1:1 to 4:1	20	98-99%
TORNILLO SIN-FIN	5:1 to 75:1	30	20-98%
HELICOIDALES CRUZADOS	1:1 to 6:1	30	70-98%

Tabla 4.2.- Factor de forma de Lewis

UMERO DE	20° PR	OFUNDI -	ENGRANA	JES IN-	20° DIENTES COR	25° PROFUNDIDAD
IENTES	DAD CO	MPLETA	TERNOS	20° A C	$TOS a = \frac{0.8}{P}$	COMPLETA $a = \frac{1}{P}$
	у	Y	Y	Y	γ Υ	y Y
10	0.064	0.201			0.083 0.261	0.076 0.238
11	0.072	0.226			0.092 0.289	0.082 0.259
12	0,078	D. 245			0.099 0.311	0.088 0.277
13	0.083	0.261		-	0.103 0.324	0.093 0,293
14	0.088	0.276			0.108 0.340	0.098 0.307
15	0.092	D.289			0.111 0.359	0.102 0.320
16	0.094	0.295			0.115 0.361	0.106 0.332
17	0.096	0.30			0.117 0.368	0.109 0.342
18	0.098	0.308			0.120 0.377	0.112 0.352
19	0.100	0.314			0.123 0.387	0.115 0.361
20	0.102	0.320			0.125 0.393	0.118 0.369
21	0.104	0.327			0.127 0.399	0.120 0.377
22	0.105	0.331			0.129 0.406	0.122 0.384
23	0.106	0.333	·		0.130 0.408	0.124 0.390
24	0.107	0.337			0.132 0.416	0.126 0.396
25 26	0.108	0.339			0.133 0.417	0.128 0.402
26	0.110	0.346			0.135 0.425	0.130 0.407
27	0.111	0.349			0.136 0.427	0.137 0.412
28	0.112	0.353	0.220	0.691	0.137 0.432	0.133 0.417
30	0.114	0.358	0.216	0.678	0.139 0.436	0.135 0.425
34	0.118	0.371	0.210	0.659	0.142 0.446	0.140 0,440
38	0.122	0.383	0.205	0.643	0.145 0.455	0.144 0.452
43	0,126	0.396	0.200	0.628	0.147 0.465	0.148 0.464
50	0.130	0.408	0.195	0.612	0.151 0.474	0.152 0.477
- 60	0.134	0.421	0.190	0.596	0.154 0.484	0.156 0.491
. 70	0.136	0.429	0.187	0.586	0.157 0.493	0.160 0.501
. 80	0.139	0.436	0.184	9.578	0.159 0.499	0.162 0.509
90	0.141	0.442	0.182	0.571	0.160 0.503	0.164 0.516
. 100	0.142	0.446	0.180	0.565	0.161 0.506	0.166 0.521
200	0.147	0.463	0.175	0.549	0.167 0.524	0.174 0.545
. 300	. 0. 150	0.471	0.170	0.533	0.170 0.534	0.176 0.554
Crena -	0.154	0.484			0.175 0.550	0.180 0.566

Tabla 4.3.- Esfuerzos admisible para dientes de engrane (Ec. De Lewis)

MATERIAL	ESFUERZO ADMISIBLE
	(psi)
Hierro fundido (ASTM 20)	8000
Hierro fundido, grado medio	10000
Hierro fundido, alta calidad	15000
Acero fundido, 0.2% C, sin tratar.	20000
Acero fundido, 0.2% C, tratado	28000
AISI 1020, Endurecido en la superficie	18000
AISI 1030,sin tratar	20000
AISI 1035, sin tratar	23000
AISI 1040, sin tratar	25000
AISI 1045, sin tratar	30000
AISI 1045, tratado térmicamente	30000
AISI 1050, tratado térmicamente	35000
SAE 2320, endurecido en la superficie	50000
SAE 3245, tratado térmicamente	65000
SAE 6145, tratado térmicamente	67000
Bronce SAE 62	10000
Bronce fosforado SAE 65	12000
Meehanite, grado GA	12500
Baquelita, Micarta, celoron	8000

Tabla 4.4.- Valores normalizados para el paso diametral (P)

Serie normal	2, 2.25, 2.5, 3, 4, 6, 8, 10, 12,16
Serie fina	20, 24, 32, 40, 48, 64, 96,120, 150, 200

Tabla 4.5.- Valores normalizados para el módulo (m)

Serie normal	1, 1.25, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50
Serve mornitur	1, 1,20, 1,0, 2, 2,0,0,0,10,12,10,20,20,02,10,00

Tabla 4.6.- Factor de tamaño (Ks)

Paso diametral	Modulo m	Factor Ks
≥5	≤5	1.0
4	6	1.05
3	8	1.15
2	12	1.25
1.5	20	1.40

Tabla 4.7.- Factor de aplicación (Ka)

Máquina motriz	Máquina impulsada			
	Uniforme	Choque ligero	Choque moderado	Choque pesado
Uniforme	1.0	1.25	1.5	1.75
Choque ligero	1.2	1.40	1.75	2.25
Choque moderado	1.3	1.70	2.0	2.75

Tabla 4.8.- Esfuerzos admisibles a flexión (según AGMA)

Dureza Brinell (BHN)	Esfuerzo adm	nisible a flexión
, , ,	(psi)	(MPa)
150	26000	180
200	32000	225
250	38000	250
300	41000	290
350	46000	320
400	49000	345

Tabla 4.9.- Esfuerzos admisibles a la fatiga superficial (según AGMA)

Dureza Brinell (BHN)	Resistencia a la fatiga superficio	
	(psi)	(MPa)
180	90000	622
200	94000	650
250	114000	788
300	132000	912
400	164000	1133

Tabla 4.10.- Calidades de engranes (QV) que pueden obtenerse con distintos procesos de manufactura.

<u> </u>	
Acabado	Calidad QV
Engranes fundidos o forjados	3 a 4
Engranes maquinados	5 a 7
Engranes rasurados o rectificados	8 a 11
Engranes lapeados o bruñidos	12 a 16

Tabla 4.11.- Calidades recomendadas (QV) para algunas aplicaciones

\sim	*
Aplicación	QV
Mezcladora de cemento	3 a 5
Grúas	5 a 7
Prensas	5 a 7
Transportadores	5 a 7
Lavadoras de ropa	5 a 7
Mecanismos de computadoras	10 a 11
Transmisiones automotrices	10 a 11
Giroscopios	12 a 14

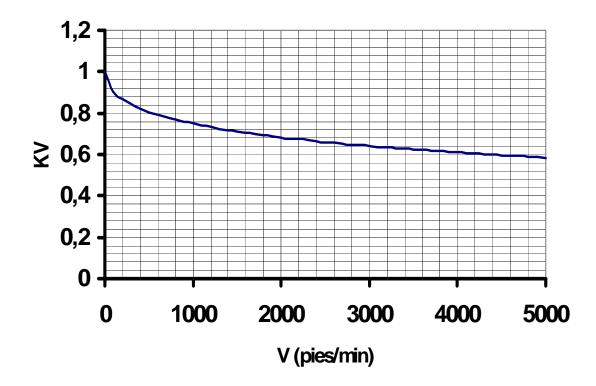


Figura 4.2.- Factor dinámico KV para calidad QV=7 (Sistema inglés)

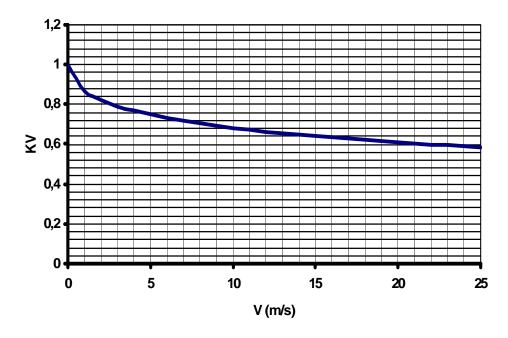


Figura 4.3.- Factor dinámico KV para calidad QV=7 (Sistema métrico)

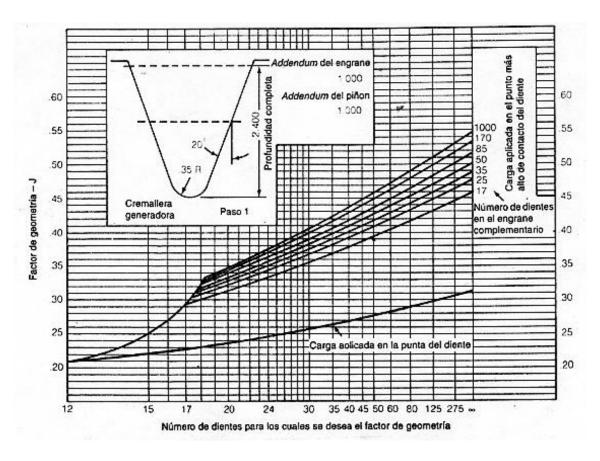


Figura 4.4.- Factor geométrico J de AGMA, ángulo de presión = 20°

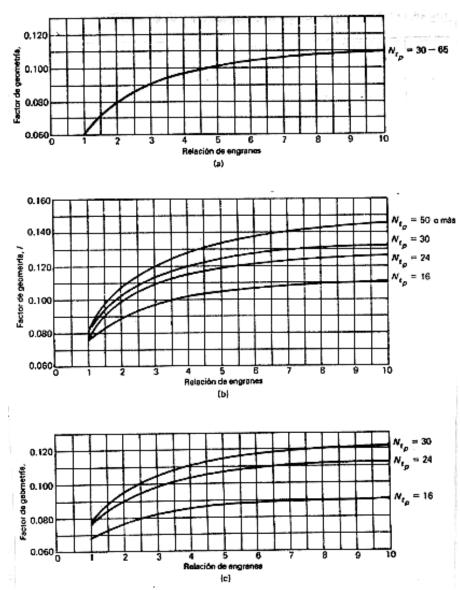


Figura 4.5.-Factor de geometría I para piñón recto externo

- a) Angulo de presión= 14.5 °, diente de profundidad total, adendo estándar = 1/P.
- b) Ángulo de presión = 20 •, dientes de profundidad total, adendo estándar = 1/P.
 - c) Ángulo de presión = 20, dientes cortos, adendo estándar = 0.8/P.

<u>CAPÍTULO 3</u> <u>RESORTES</u>

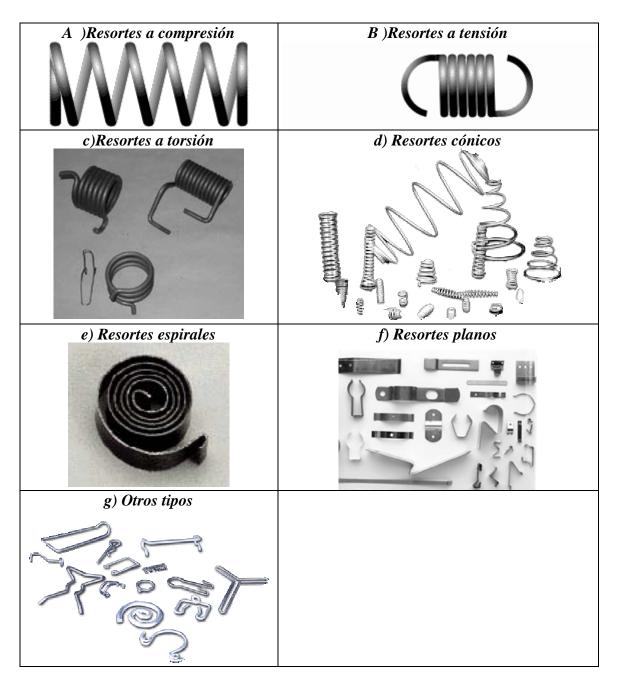


Figura 3.1.- Clasificación de los resortes.

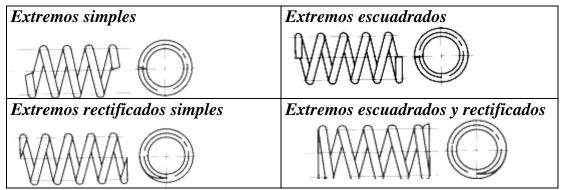


Figura 3.2.-Tipos de extremos en resortes helicoidales a compresión

Tabla 3.1.- Altura libre y altura sólida en resortes a compresión.

Tipos de extremos	No. Total de espiras	Altura sólida (H _s)	Altura libre (H_L)
Simples	Nc	(Nc + 1) d	(Nc. p) + d
A escuadra	Nc + 2	(Nc + 3) d	(Nc.p) + 3d
Rectificado simple	Ne	Nc.d	Nc. p
Escuadrados y rectificados	Nc + 2	(Nc + 2) d	(Nc.p) + (2d)

Donde:

 $p = distancia \ entre \ espiras = tan \ \lambda . \pi . D$

d = diámetro del alambre

Nc = número de espiras activas

D = diámetro medio del resorte

 λ = ángulo de hélice (< 13 •)

				gitud rondada
TIPO DE O	ANCHO		Min.	Máx.
Alemán (Cruzado)		•	a 1/2 O.I.	5 1.1 x D.t.
Inglés (Máquina)		(Indic	D.I. e Minima C=	D.I.
Leteral		D	0.1.	D.I.
Extendido		<u>)</u>	1.1 x l.D.	Como se requiera
Especial	Tai como re según d		Comp se	requiera

Figura 3.3.- Tipos de extremos en resortes helicoidales a tensión

Tabla 3.2.- Materiales para la fabricación de resortes.

Material	Temp de operación	Especificación
Alambre cuerda de piano	0- 120 °C	AISI (ASTM) AISI- 1085 (A-228)
Templado en aceite y	0- 120 °C	AISI- 1065 (A-229) AISI- 1065 (A-229)
revenido		
Alambre estirado en frío	0- 102 °C	AISI- 1066 (A-227)
Acero al Cr- V templado en aceite y revenido	0- 220 °C	AISI- 6150 (A-232)
Acero al Cr- Si templado en aceite y revenido	0- 250 °C	AISI- 9254 (A-401)
Bronce fosforado	0- 100°C	CA-510 (B-159)

Tabla 3.3.- Constantes para el calculo de la resistencia a la tensión ($\sigma_{max} = A/d^m$) de alambres de acero.

Material	Exponente m	Coeficiente A	
		ksi	MPa
Alambre cuerda de piano	0.163	186	2060
Alambre de acero templado	0.193	146	1610
en aceite y revenido			
Alambre estirado en frío	0.201	137	1510
Acero al Cr- V templado en	0.155	173	1790
aceite y revenido			
Acero al Cr- Si templado	0.091	218	1960
en aceite y revenido			

Tabla 3.4.- Calculo del esfuerzo admisible al corte en resortes bajo cargas estáticas.

Material	Esfuerzo admisible al corte
Alambre de acero estirado en frío	$ au_{adm} = 0.45 \sigma_{max}$
Alambre de acero templado y revenido	$ au_{adm} = 0.50 \sigma_{max}$
Aceros inoxidables y aleaciones no	$ au_{adm} = 0.35 \sigma_{max}$
ferrosas	

Tabla 3.5.- Diámetros normalizados para alambres

	Alambre de acero	Alambre cuerda de	Calibre Brown &	Diámetros métricos
CALIBRE	(pulg)	piano	Sharpe	recomendables
	4 3 /	(pulg)	(pulg)	(mm)
7/10	0.490	-	-	13.0
6/0	0.4615	0.004	0.580	12.0
5/0	0.4305	0.005	0.516	11.0
4/0	0.393	0.006	0.460	10.0
3/0	0.362	0.007	0.409	9.0
2/0	0.331	0.008	0.364	8.5
0	0.306	0.009	0.324	8.0
1	0.283	0.010	0.289	7.0
2	0.262	0.011	0.257	6.5
3	0.243	0.012	0.229	6.0
4	0.225	0.013	0.204	5.5
5	0.207	0.014	0.181	5.0
6	0.192	0.016	0.162	4.8
7	0.177	0.018	0.144	4.5
8	0.162	0.020	0.128	4.0
9	0.148	0.022	0.114	3.8
10	0.135	0.024	0.101	3.5
11	0.120	0.026	0.090	3.0
12	0.105	0.029	0.080	2.8
13	0.091	0.031	0.072	2.5
14	0.080	0.033	0.064	2.0
15	0.072	0.035	0.057	1.8
16	0.062	0.037	0.050	1.6
17	0.054	0.039	0.045	1.4
18	0.047	0.041	0.040	1.2
19	0.041	0.043	0.035	1.0
20	0.034	0.045	0.032	0.9
21	0.031	0.047	0.028	0.80
22	0.028	0.049	0.025	0.70
23	0.025	0.051	0.022	0.65
24	0.023	0.055	0.020	0.6 ó 0.55
25	0.020	0.059	0.017	0.50 ó 0.55
26	0.018	0.063	0.015	0.45
27	0.017	0.067	0.014	0.45
28	0.016	0.071	0.012	0.40
29	0.015	0.075	0.011	0.40
30	0.014	0.080	0.010	0.35
31	0.013	0.085	0.008	0.35
32	0.012	0.090	0.0079	0.30 ó 0.35
33	0.011	0.095	0.007	0.30
34	0.010	0.100	0.0063	0.28
35	0.0095	0.106	0.00501	0.25
36	0.0090	0.102	0.00500	0.22
37	0.0085	0.118	0.00445	0.22
38	0.0085	0.124	0.00396	0.20
39	0.008	0.130	0.00353	0.20
40	0.0070	0.138	0.00314	0.18

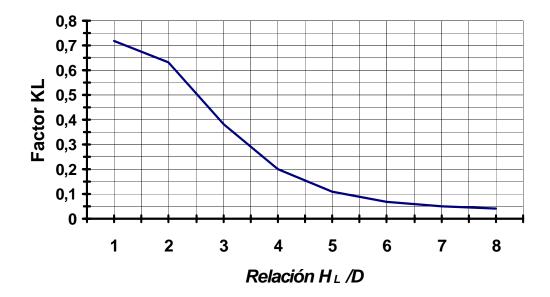


Figura 3.4.- Factor K_L para resortes a compresión con extremos articulados

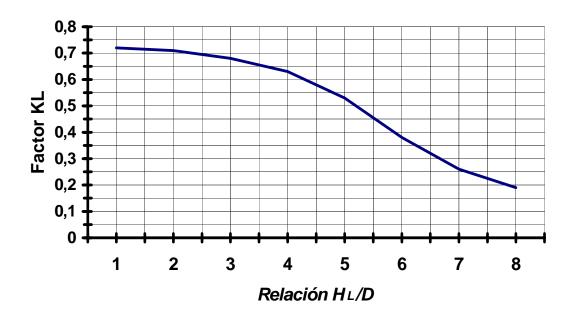


Figura 3.5.- Factor K_L para resortes a compresión con extremos fijos

<u>CAPÍTULO 5</u> <u>TRANSMISIONES FLEXIBLES</u>

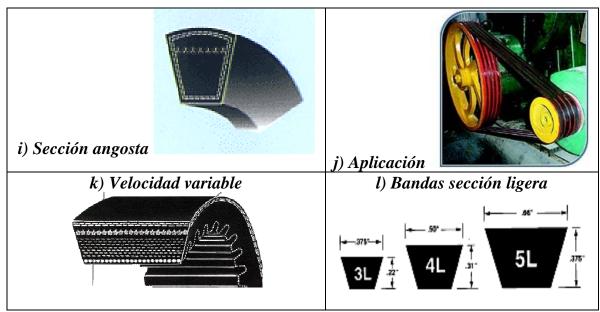


Figura 5.1.- Algunos tipos de transmisiones flexibles.

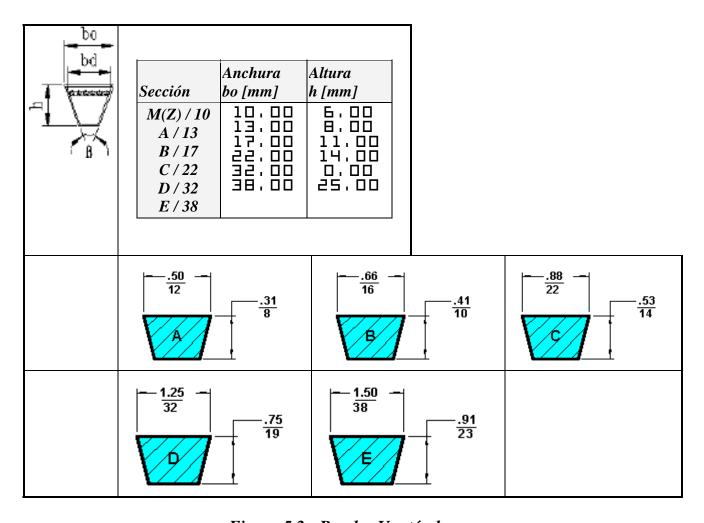


Figura 5.2.- Bandas V estándar

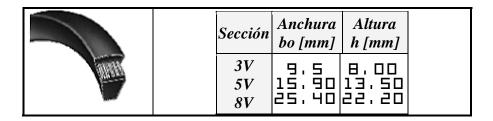


Figura 5.3.- Bandas V sección angosta.

Tabla 5.1.- Características de diseño de algunos tipos de bandas

Sección	Dimensiones (mm)	Potencia máxima Transmisible por banda (kW)	Diámetro mínimo (mm)	Longitudes estándar (mm)
Y, 2L	6 x 4	0.6	20	200 - 500
Z, 3L	10 x 6	2.3	50	400 - 1500
A, 4L	13 x 8	3.3	75	518 - 4100
B, 5L	17 x 11	6.4	125	700 - 7165
С	22 x 14	14.0	200	1070 - 10700
D	32 x 19	32.0	355	2740 - 15200
E	38 x 23	50.0	500	3090 - 16800

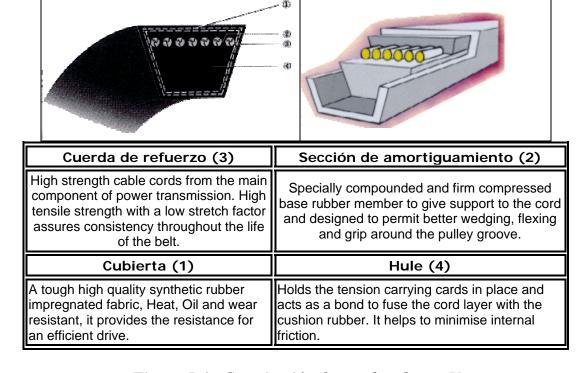


Figura 5.4.- Constitución de una bandas en V

Tabla 5.2.- Factor de aplicación (F)

<u></u>		
	Motores eléctricos:	Motores eléctricos:
	fase dividida C.A.	C.A. Monofásicos dev <u>a</u>
	Jaula de ardilla par	nados en serle. Alto
	normal y síncronos	deslizamiento, o al-
	C.C. devanado paral <u>s</u>	to par de arranque.
Māguina	lo. Turbimas eléctr <u>i</u>	C.A. Rotor devanado
Impulsada	cas y de agoa. Moto-	tipo capacitor C.C.
}	res de combustión i <u>n</u>	devanado compound.
	terne más de 4 clli <u>n</u>	Máquinas de vapor.
	dros.	Motores de menos de
		4 cllindros. Líneas
	ı	de transmisión com
ľ		embragues.
		
Agitadores	1.2	1_4
Compresores centrif <u>u</u>	1.2	1.4
gos		_
Transportadores de cí <u>n</u> ta	1.2	7.4
Transportadores (de	1.4	1.8
tornillos, etc.)		
Molinos	1.4	1.6
Ventiladores centri-	1,2	1-4
fugós		
Ventiladores de hélice	1,4	2.0
Generadores y alterna- dores	1.2	1.2
Arboles de transmisión	1.4	1.6
Bombas centrifugas	1.2	1.4
Bombas y compresores		
Alternantes	· 1.2	1.6
	<u></u>	·

Tabla 5.3.- Factor de corrección por ángulo de contacto (A)

Dg-Dp	Angulo de	Factor de	Dg-Dp	Angulo de	Factor de
C	contacto	corrección	C	contacto	corrección
0.00	180°	1.0	0.76	135°	0.87
0.09	175°	0.99	0.84	130°	0.86
0.17	170°	0.98	0.92	125°	0.84
0.26	165°	0.96	1.00	120°	0.82
0.35	160°	0.95	1.07	115°	0.8
0.43	155°	0.94	1.14	110°	0.78
0.52	150°	0.92	1.22	105°	0.76
0.6	145°	0.91	1.28	180°	0.74
0.68	140°	0.89			

Tabla 5.4.- Características de diseño para bandas V estándar.

Sección de la	Gama de diámetr	os recomendados	Gama de potencias para una o más			
banda			bandas			
	Pulg	m	hp	kW		
A	3 – 5	0.075 - 0.125	1/4 - 10	0.2 - 7.5		
В	5.4 – 8	0.137 - 0.20	1 – 25	0.75 – 19		
С	8 – 12.4	0.20 - 0.315	15-100	11-75		
D	13 – 20.0	0.33 - 0.508	50 -250	38 – 190		
\overline{E}	22.0 - 28.0	0.56 - 0.70	100 y más	75 y más		


Tabla 5.5.- Potencia transmisible por banda (K) para ángulos de contacto de 180° en kW.

SECCION	DIAMETRO DE DE LA POI	E PASO LEA	VELOCI	AD DE		ANDA E	N
DE LA BANDA	[p1g]	[m]	5	10	15	20	25
Α .	2.6 3.0 3.4 3.8 4.2 4.6 5.0 y mayor	0.066 0.076 0.086 0.096 0.106 0.116 0.127	0.4 0.5 0.65 0.65 0.7 0.8 0.9	0.5 0.8 1.0 1.2 1.3 1.4	0.4 0.8 1.2 1.4 1.6 1.8 2.0	0.1 0.7 1.1 1.5 1.8 2.0 2.2	0.3 0.8 1.3 1.6 1.9 2.2
8	4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 y mayor	0.106 0.116 0.127 0.137 0.147 0.157 0.167 0.177 y	0.8 0.9 1.0 1.1 1.2 1.3 1.4	1.2 1.5 1.7 1.9 2.1 2.3 2.4 2.6	1.3 1.7 2.1 2.4 2.7 2.9 3.2	0.9 1.6 2.1 2.5 2.9 3.2 3.5 3.7	0.2 0.9 1.6 2.1 2.6 3.0 3.3
¢	6 7 8 9 10 11 12 y mayor	0.152 0.177 0.203 0.229 0.254 0.279 0.305 y mayor	1.4 1.9 2.2 2.5 2.7 2.8 3.0	2.0 2.9 3.6 4.2 4.7 5.0 5.3	2.0 3.5 4.5 5.4 6.0 6.6 7.0	1.4 3.3 4.7 5.9 6.8 7.5 7.6	2.3 4.1 5.5 6.6 7.5 8.3
D	10 11 12 13 14 15 16 17 y mayor	0.254 0.279 0.305 0.330 0.355 0.381 0.405	3.73714 5.470	4.8 98 6 28 4 5.6 7 8 9 9 10	4.9 6.8 8.4 9.7 10.9 11.9 12.9	3.8 6.3 8.5 10.3 11.8 13.1 14.3 15.1	1.0 4.2 6.8 9.1 11.0 12.0 14.2
E	16 18 20 22 24 26 28 y mayor	0.405 0.456 0.508 0.558 0.609 0.660	6.5 7.4 8.1 8.7 9.2 9.7	10.6 - 12.4 13.9 15.1 16.1 17.0	13.1 15.9 18.1 19.8 21.3 22.6 23.7	13.5 17.2 20.1 22.5 24.5 26.2 27.7	11.4 16.0 19.7 22.8 25.6 27.4 29.2

Tabla 5.6.- Número de serie y longitud en la línea de paso para bandas V estándar

Secc	ión A	Secc	ión B	Secci	ión C	Secc	ión D	Secc	ión E
No. de	Long. de								
serie	paso	serie	paso	serie	paso	serie	paso	serie	paso.
A26	26.0	B35	36.1	C51	52.6	D120	122.2	E180	183.3
A31	31.9	B38	39.1	C60	61.4	D128	130.4	E195	198.5
A35	35.9	B42	43.1	C68	69.4	D144	146.4	E210	213.6
A38	38.9	B46	47.1	C75	76.6	D158	160.0	E240	240.0
A42	42.9	B51	52.1	C81	82.6	D162	164.4	E270	270.0
A46	46.9	B55	56.4	C85	86.2	D173	175.4	E300	300.0
A51	51.9	B60	61.0	C90	91.9	D180	182.6	E330	330.0
A60	60.9	B68	69.3	C96	97.9	D195	197.6	E360	360.0
A68	68.9	B75	76.3	C105	106.9	D210	213.1		
A75	75.9	B81	82.3	C112	113.9	D240	240.0		
A80	81.1	B85	86.5	C120	122.0	D270	270.0		
A85	86.1	B90	91.5	C128	130.0	D300	300.0		
A90	91.1	B97	99.0	C144	146.0	D330	330.0		
A96	97.1	B105	106.5	C158	160.0	D360	360.0		
A105	106.1	B112	114.0	C162	164.4				
A112	113.1	B120	121.5	C173	175.0				
A120	121.1	B128	129.5	C180	182.0				
A128	129.1	B144	145.5	C195	197.0				
		B158	159.5	C210	212.0				
		B173	174.5	C240	240.0				
		B180	181.6	C270	270.0				
		B195	196.3	C300	300.0				
		B210	211.3	C330	330.0				
		B240	240.0	C360	360.0				
		B270	270.0						
		B300	370.0						

Tabla 5.7.-Dimensiones normalizadas para cadenas silenciosas

ANSI	Paso v	ancho	Roller		Pin			Link	Plate		Tensile
Chain No.	1 430 %	T doo'x difference		Dia.	Dia. Length		Height		Thickness		Strength
Onam No.	inch	mm	mm	mm	mm	mm	mm	mm	mm	mm	kgf
25H	1/4" x 1/8"	6.350 x 3.175	3.30	2.30	4.50	5.10	5.00	5.80	1.00	1.00	530
82RH2005	1/4" x 1/8"	6.350 x 3.175	SC0405DHA	2.40	6.10		2.80	6.70	1.00	0.70	520
82RH2010	1/4" x 1/4"	6.350 x 6.350	SCA0409	2.40	8.25		2.80	6.70	1.00	0.70	780
82RH2015	1/4" x 3/8"	6.350 x 9.525	SC2515	2.40	10.30		2.80	6.70	1.00	1.00	1040
92RH2005	1/4" x 1/8"	6.350 x 3.175	SCA0404	2.40	6.10		2.80	6.70	1.00	0.70	520
92RH2010	1/4" x 1/4"	6.350 x 6.350	SC0412H	2.40	8.25		2.80	6.70	1.00	0.70	780
92RH2015	1/4" x 3/8"	6.350 x 9.525	SCA0412HSDH	2.40	10.30		2.80	6.70	1.00	1.00	1040
270H	0.335 x 0.187	8.50 x 4.5	5.00	3.28	13.15		6.96	8.60	1.30	1.70	980

Tabla 5.8.- Dimensiones normalizadas para cadenas de rodillos

ANGI	Paso	x ancho	Roller		Pin			Link P	late		Tensile
ANSI Chain No.	r aso x ancho		Dia.	Dia.	Length		Height		Thickness		Strength
Gridin 140.	inch	mm	mm	mm	mm	mm	mm	mm	mm	mm	kgf
25	1/4" x 1/8"	6.350 x 3.175	3.30	2.30	3.80	4.80	5.00	5.80	1.00	1.00	530
35	3/8" x 3/16"	9.525 x 4.800	5.08	3.60	5.80	7.00	7.40	8.70	1.25	1.25	950
41	1/2" x 1/4"	12.70 x 6.35	7.80	6.60	7.90	8.50	8.33	9.73	1.25	3.62	950
40	1/2" x 5/16"	12.70 x 7.95	7.95	3.96	8.25	9.35	10.20	12.00	1.50	1.50	1800
50	5/8" x 3/8"	15.875 x 9.53	10.16	5.06	10.10	11.60	13.00	15.00	2.00	2.00	3000
60	3/4" x 1/2"	19.05 x 12.70	11.91	5.95	12.50	14.15	15.65	17.50	2.40	2.40	4200
80	1" x 5/8"	25.4 x 15.88	15.87	7.94	16.10	17.70	20.80	24.00	3.10	3.10	7300

CAPÍTULO 6 RODAMIENTOS

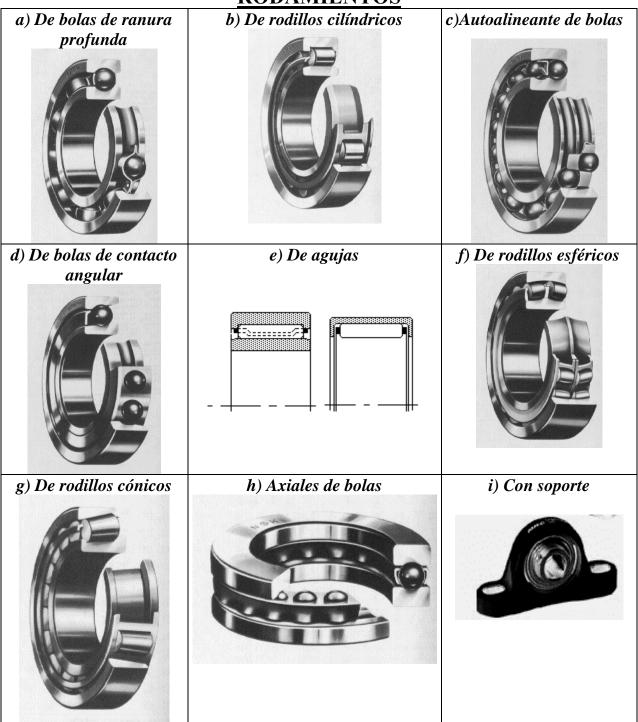


Figura 6.1.- Principales tipos de rodamientos.

Tabla 6.1 .- Características de cada tipo de rodamiento para poder ser usado en una aplicación específica.

Rodamiento	Dirección de la carga				Relación ga/volum	en	Capacidad de desalineación		
	Radial	Axial	Ambas	Alta	Media	Baja	Alta	Media	baja
De bolas de ranura profunda	Si		Si		Si			Si	
De rodillos cilíndricos	Si		Algunos		Si				Si
De agujas	Si		Si	Si					Si
De rodillos cónicos	Si	Si	Si		Si				Si
Autoalineante de bolas	Si		Si			Si	Si		
De rodillos esféricos	Si		Si		Si		Si		
De bolas de contacto angular		Si				Si			Si
Axial de bolas		Si			Si				Si

Después de seleccionar el tipo de rodamiento adecuado se debe determinar su tamaño en base a su capacidad de carga estática o su capacidad de carga dinámica. Si el rodamiento está estacionario por largos períodos o gira lentamente y sometido a cargas de impacto, entonces, el procedimiento de selección debe realizarse sobre la base de su capacidad de carga estática. Para operación continua el rodamiento se selecciona sobre la base de su capacidad de carga dinámica.

Capacidad de carga estática.-

La capacidad de carga estática para cada rodamiento que se puede encontrar en manuales se basa en las cargas estáticas radial y axial que actúan sobre el rodamiento.

Cuando un rodamiento está sometido tanto a cargas axial y radial, la carga equivalente estática puede calcularse así:

$$Po = XoFr + YoFa$$

Sí sólo actúan fuerzas radiales:

Po=Fr

Donde:

 $Po = carga \ equivalente \ estática (N)$

 $Fr = carga \ estática \ radial \ (N)$

 $Fa = carga \ estática \ axial (N)$

Xo = factor radial estático

Yo = factor estático axial.

Los valores Xo & Yo se proporcionan en tablas.

El coeficiente de Seguridad estática se puede calcular así:

$$Co = SoPo$$

Donde:

Co = Coeficiente de seguridad estática (N)

So = factor de seguridad estática

 $Po = Carga \ estática \ equivalente \ (N)$

Los valores de So dependen del tipo de rodamiento y de las necesidades de funcionamiento. En la tabla 6.2 se proporcionan los valores del Coeficiente de Seguridad

Tabla 6.2.- Coeficiente de seguridad estático

Tipo de carga	Ruido no) importante	Funcionami	ento normal	Funcionamiento silencioso		
	Bolas	Rodillos	Bolas	Rodillos	Bolas	Rodillos	
Carga suave	0.5	1	1	1.5	2	3	
Carga normal	0.5	1	1	1.5	2	3.5	
Carga con impacto	≥1.5 ≥2.5		≥1.5 ≥3		≥2	≥4	

Capacidad de carga dinámica

La capacidad de carga dinámica de un rodamiento depende de las fuerzas dinámicas que actúan sobre el rodamiento, así como de las cargas estáticas básicas. Por lo tanto el primer paso es calcular la carga estática equivalente antes de continuar con el procedimiento siguiente.

Si el rodamiento está sometido tanto a carga radial como a carga axial, entonces puede calcularse la carga dinámica equivalente:

$$P = XFr + YFa$$

Donde:

P = Carga dinámica equivalente (N)

 $Fr = Carga\ estática\ radial\ (N)$

 $Fa = carga\ estática\ axial\ (N)$

 $X = factor\ radial$

Y= factor axial

cuando Fa = 0 o Fa es relativamente pequeño hasta un valor límite de Fa/Fr = e (donde e es un valor límite) entonces:

$$P = Fr$$

Los valores de X, Y & e se proporcionan en tablas.

Una vez que se ha calculado la carga dinámica equivalente puede utilizarse para calcular la capacidad de carga dinámica del rodamiento, utilizándose este valor para seleccionar el rodamiento sobre la base de la vida requerida y a la carga dinámica equivalente (P)

La ecuación ISO para duración nominal establece:

$$L_{10} = \left[\frac{C}{P}\right]^P$$
 or $C = PL_{10}^{1/p}$

Donde:

L = Duración nominal en millones de revoluciones

C = capacidad de carga dinámica del rodamiento

P = carga dinámica equivalente

p = exponente de duración

p = 3 para todos los rodamientos de bolas

p = 10/3 para los demás tipos de rodamientos.

Duración nominal de un rodamiento

La duración nominal (definida como el número de revoluciones que el 90% de un grupo de rodamientos idénticos pueden sobrevivir) se determina a partir de la vida esperada del rodamiento. Las expectativas de vida para diversas máquinas de proporcionan en la tabla 6.3.

Tabla 6.3.- Vida esperada en un rodamiento para diversas aplicaciones.

in the circumstance of the following part with a	rsus apricaciones.
Uso de la máquina	Horas
Intermitente, máquinas domésticas	300-3000
Periodos cortos- herramientas manuales- automóviles	3000-8000
Alta confiabilidad por periodos cortos-grúas	8000-12000
8 horas / día- uso parcial – motores	10000-25000
8 horas / día- uso total- máquinas herramientas-ventiladores	20000-30000
Uso continuo	40000-50000

Rodamientos de bolas de garganta profunda

Carga estática equivalente

$$Si Fa/Fr > 0.8, Po = 0.6Fr + 0.5Fa$$

 $Si Fa/Fr \le 0.8, Po = Fr$

Carga dinámica equivalente

$$P = XFr + YFa$$

X & Y son dependientes de la relación Co/Fa

Co Fa	е	Fa Fr	<u>≤</u> e	Fa > e Fr		
		Χ	Υ	X	Υ	
5	0.35	1	0	0.56	1.26	
10	0.29	1	0	0.56	1.49	
15	0.27	1	0	0.56	1.64	
20	0.25	1	0	0.56	1.76	
25	0.24	1	0	0.56	1.85	
30	0.23	1	0	0.56	1.92	
50	0.20	1	0	0.56	2.13	
70	0.19	1	0	0.56	2.28	

Rodamientos de rodillos cilíndricos

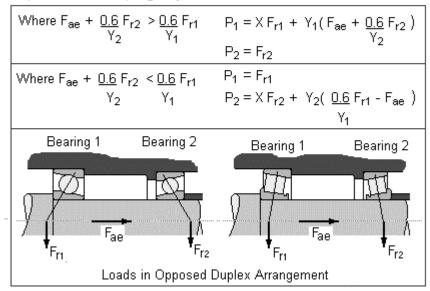
Carga estática equivalente

$$Po = Fr$$

Calculo de la carga equivalente

$$P = Fr$$

Rodamientos de agujas


Estos rodamientos solamente pueden soportar cargas axiales, por lo tanto.

Rodamientos de rodillo cónicos.

Donde:

Fai = Componente de la carga en dirección axial

Assume that radial loads F_{r1} and F_{r2} are applied on bearings 1 & 2 respectively, and an external axial load F_{ae} is applied as shown. If the axial load factors are Y_1 , Y_2 and the radial load factor is X, the equivalent loads P_1 , P_2 may be calculated as follows:

Source: NSK-RHP

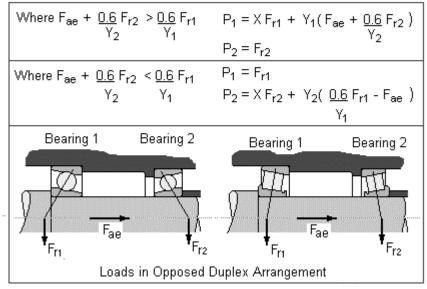
Carga equivalente estática

$$Po = 0.5Fr + YoFa o si Po < Fr use Po = Fr$$

Carga equivalente dinámica

$$Si Fa/Fr \le e, P = Fr$$

 $Si Fa/Fr > e, P = 0.4Fr + Y1Fa$


Los valores de e, Yo, Y1 se proporcionan en catálogos.

Rodamiento de bolas de contacto angular (ángulo de contacto = 40/)

Donde:

Fai = Componente de la carga en dirección axial

Assume that radial loads F_{r1} and F_{r2} are applied on bearings 1 & 2 respectively, and an external axial load F_{ae} is applied as shown. If the axial load factors are Y_1 , Y_2 and the radial load factor is X, the equivalent loads P_1 , P_2 may be calculated as follows:

Source: NSK-RHP

Carga equivalente estática en rodamiento sencillo o en tandem

 $Po = 0.5Fr + 0.26Fa \ o \ si \ Po < Fr \ use \ Po = Fr$

Carga equivalente estática espalda-espalda ó frente-frente

Po = Fr + 0.52Fa

Carga equivalente dinámica en rodamiento sencillo ó en tandem

$$Si Fa/Fr \le 1.14, P = Fr$$

 $Si Fa/Fr > 1.14, P = 0.35Fr + 0.57Fa$

Carga equivalente dinámica esplada-espalda o frente a frente

$$Si Fa/Fr \le 1.14, P = Fr + 0.55Fa$$

 $Si Fa/Fr > 1.14, P = 0.57Fr + 0.93Fa$

Fr y Fa son las fuerzas que actúan sobre el par de rodamientos.

Rodamiento de bolas autoalineante

Carga equivalente estática

$$Po = Fr + YoFa$$

Y se proporciona en tablas para cada rodamiento

Carga equivalente dinámica

$$Si Fa/Fr \le e, P = Fr + Y3Fa$$

 $Si Fa/Fr > e, P = 0.65Fr + Y3Fa$

Los valores de e, Yo, Y2, Y3 se proporcionan en tablas.

Rodamientos de rodillos esféricos

Carga estática equivalente

$$Po = Fr + YoFa$$

Carga equivalente dinámica

$$Si Fa/Fr \le e, P = Fr + Y3Fa$$

 $Si Fa/Fr > e, P = 0.67Fr + Y2Fa$

Los valores de e, Yo, Y2, Y3 se proporcionan en tablas.

Rodamiento axial de bolas.

Carga estática equivalente

$$Po = Fa$$

Carga equivalente dinámica

Tabla 6.4.- Parámetros de diseño para rodamientos de bolas de ranura profunda

60		Dimer	isiones		Capa	cidad	Veloc	idad
	d	D	В	r _{min}	C _{ISO}	$C_{0,ISO}$	Grasa	Aceite
	(mm)	(mm)	(mm)	(mm)	(kN)	(kN)	n _g (1	rpm)
6000	10	26	8	0.3	4.58	1.97	28 500	35 000
6001	12	28	8	0.3	6.10	2.37	25 500	32 000
6002	15	32	9	0.3	6.59	2.84	22 000	28 000
6003	17	35	10	0.3	6.00	3.25	20 000	25 000
6004	20	42	12	0.6	9.38	6.03	16 500	20 000
6005	25	47	12	0.6	10.07	6.83	14 500	18 000
6006	30	55	13	1.0	13.23	8.28	12 000	15 000
6007	35	62	14	1.0	16.98	10.28	10 500	13 000
6008	40	68	15	1.0	16.77	11.55	9 500	12 000
6009	45	75	16	1.0	20.98	16.15	8 500	10 500
6010	50	80	16	1.0	21.79	16.58	8 000	10 000
6011	55	90	18	1.1	28.27	21.25	7 200	9 000
6012	60	95	18	1.1	29.44	23.16	6 700	8 000
6013	65	100	18	1.1	30.54	26.15	6 300	7 500
6014	70	110	20	1.1	38.05	30.87	5 700	6 800
6015	75	115	20	1.1	39.52	33.47	5 400	6 500
6016	80	125	22	1.1	47.64	39.68	5 000	6 000
6017	85	130	22	1.1	49.53	42.98	4 800	5 800
6018	90	140	24	1.5	58.16	49.60	4 500	5 400
6019	95	145	24	1.5	60.36	53.87	4 300	5 200
6020	100	150	24	1.5	60.14	54.18	4 100	4 900
6021	105	160	26	2.0	72.30	66.77	3 900	4 700
6022	110	170	28	2.0	81.97	72.75	3 700	4 400
6024	120	180	28	2.0	84.94	79.23	3 400	4 000
6026	130	200	33	2.0	106.35	100.61	3 100	3 700
6028	140	210	33	2.0	109.99	108.64	2 800	3 300

Tabla 6.5.- Parámetros de diseño para rodamientos cónicos.

	Dimensiones (mm)			Capacidaa (d	l laN)	Velocidad de giro limite r.p.m		
	d	D	В	<i>C</i>	Со	Grasa	Aceite	
302 03	17	40	12	1660	1120	10000	13000	
302 04	20	47	14	2400	1700	8500	11000	
302 05	25	52	15	2700	1960	7500	10000	
302 06	30	62	16	3550	2600	6300	8300	
302 07	35	72	17	4500	3350	5300	7000	
302 08	40	80	18	5200	3900	4800	6300	
302 09	45	85	19	5850	4500	4400	5800	
302 10	50	90	20	6550	5300	4100	5400	
302 11	55	100	21	7800	6200	3600	4700	
302 12	60	110	22	8500	6700	3300	4300	
302 13	65	120	23	10000	8000	3000	3900	
302 14	70	125	24	11000	9000	2800	3700	
302 15	75	130	25	12200	10200	2600	3400	
302 16	80	140	26	12900	10600	2500	3300	
302 17	85	150	28	15300	12700	2300	3000	
302 18	90	160	30	17000	14300	2200	2900	
302 19	95	170	32	19000	16000	2000	2600	
302 20	100	180	34	21600	18600	1900	2500	
302 21	105	190	36	23600	20400	1800	2400	
302 22	110	200	38	26500	23600	1700	2300	
302 24	120	215	40	30000	26500	1600	2100	

Esfuerzo Normal

$$\sigma = \frac{P}{A}$$

Esfuerzo cortante

$$au = \frac{P}{A}$$

Elongación

$$\delta = \frac{PL}{EA}$$

Deformación unitaria por corte

$$\gamma = \frac{\mathcal{E}_S}{L}$$

Módulo de elasticidad al corte

$$G = \frac{\tau}{\gamma} = \frac{E}{2(1+\mu)}$$

Módulo de elasticidad o de Young (Rigidez del material)

$$E = \frac{\sigma}{\varepsilon}$$

Factor de seguridad

$$F.S = \frac{\sigma_{FLUENCIA}}{\sigma_{ADMISIBLE}}$$

Factor de seguridad

$$F.S = \frac{\tau_{\rm FLUENCIA}}{\tau_{\rm ADMISIBLE}}$$

Esfuerzo de contacto

$$\sigma_{\rm C} = \frac{\rm P}{\rm A_{\rm C}}$$

$$\sigma_{\rm C} = \frac{P}{n(d*t)}$$

Módulo o relación de Poisson

$$\mu = \left| \frac{-\varepsilon_{Y}}{\varepsilon_{X}} \right| = \left| \frac{-\varepsilon_{Z}}{\varepsilon_{X}} \right|$$

Esfuerzos térmicos

$$\delta_T = \alpha L(\Delta T)$$

$$\sigma_T = \alpha E(\Delta T)$$

<u>Deformación unitaria sobre el eje x</u> (elemento sometido a tensión)

$$\varepsilon_{X} = \frac{\delta_{X}}{L_{Y}}$$

Deformación unitaria sobre el eje y

$$\varepsilon_{Y} = \frac{-\delta_{Y}}{L_{Y}}$$

Deformación unitaria sobre el eje z

$$\varepsilon_{z} = \frac{-\delta_{z}}{L_{z}}$$

Esfuerzo y deformación angular en flechas

$$\tau = \frac{\pi R}{I} = \frac{\pi D}{2J}$$

$$\theta = \frac{M_t L}{GI}$$

Momento polar de inercia para una sección circular sólida

$$J = \frac{\pi D^4}{32} = \frac{\pi R^4}{2}$$

Momento polar de inercia para una sección circular hueca

$$J = \frac{\pi \left(R_E^4 - R_I^4\right)}{2}$$

Momento polar de inercia para una sección circular de pared delgada o tubular

$$J = 2\pi R_E^3 t$$

Transmisión de potencia mediante flechas

$$Pot = M_{T}\omega$$

$$Pot = \frac{M_{t}n}{63000} \text{ (Sistema inglés)}$$

$$Pot = \frac{M_{t}n}{9550} \text{ (Sistema Internacional)}$$

$$Pot = \frac{M_{t}n}{71600} \text{ (Sistema métrico técnico)}$$

RESORTES

Esfuerzo cortante

$$\tau = k_S \frac{8PD}{\pi d^3}$$

Deformación axial

$$\Delta = \frac{8PC^3n_C}{Gd}$$

Constante del resorte

$$q = \frac{P}{\Lambda}$$

RECIPIENTES A PRESIÓN DE PARED DELGADA

RECIPIENTES CILÍNDRICOS

Esfuerzo radial

$$\sigma_1 = \frac{\text{Pe} \cdot \text{r}}{\text{t}} = \frac{\text{Pe} \cdot \text{d}}{2\text{t}}$$

Esfuerzo longitudinal

$$\sigma_2 = \frac{\text{Pe} \cdot \text{d}}{4\text{t}} = \frac{\text{Pe.r}}{2\text{t}}$$

RECIPIENTES ESFÉRICOS

Esfuerzo radial

$$\sigma_1 = \frac{\text{Pe} \cdot \text{d}}{4 \, \text{t}}$$

Esfuerzo longitudinal

$$\sigma_2 = \frac{\text{Pe} \cdot \text{d}}{4 \text{ f}}$$

ESFUERZOS EN VIGAS

Esfuerzo normal o de flexión

$$\sigma = \frac{MC}{I}$$

Esfuerzo cortante directo

$$\tau = \frac{\mathbf{V}}{A}$$

Esfuerzo cortante longitudinal

$$\tau = \frac{\text{V Q}}{\textit{Ib}}$$

Modulo de sección

$$Z = \frac{I}{C}$$

Esfuerzos principales máximo y mínimo

(Máximo)

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2}$$

(Mínimo)

$$\sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2}$$

Esfuerzo cortante máximo

$$\tau_{mx} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2}$$

Teoría de la energía máxima de distorsión

$$(\sigma_1)^2 + (\sigma_2)^2 - \sigma_1 \sigma_2 \le (\sigma_f)^2$$

Teoría del esfuerzo normal

$$|\sigma_1| \le \frac{\sigma_{\max}}{F.S}$$
 y $|\sigma_2| \le \frac{\sigma_{\max}}{F.S}$

Teoría del esfuerzo cortante máximo

$$\sigma_1 \le \frac{\sigma_f}{FS}$$
 y $\sigma_2 \le \frac{\sigma_f}{F.S}$

$$\left| \sigma_1 - \sigma_2 \right| \leq \frac{\sigma_f}{F.S}$$

Factor teórico de esfuerzos

$$K_{t} = \frac{\sigma_{mx}}{\sigma_{promedio}}$$
 Kt=factor teórico

<u>Calculo de esfuerzos incluyendo la</u> concentración de esfuerzos.

$$\frac{Axial}{\sigma = k_t \frac{P}{A}}$$

$$\tau = k_t \frac{M_t D}{2 J}$$

$$\sigma = k_t \frac{MC}{I}$$

Resistencia a la fatiga

$$\sigma_e = \sigma_e \left(\frac{1}{k_f}\right) k_a k_b k_c k_d \quad (flexion)$$

$$\tau = \tau_e \left(\frac{1}{k_f}\right) k_a k_b k_c k_d \quad (torsion)$$

Ecuaciones de diseño

Ec. de Goodman

$$\frac{1}{F.S} = \frac{\sigma_m}{\sigma_{\max}} + \frac{\sigma_r}{\sigma_e}$$

Ec. de Gerber

$$\frac{1}{F.S} = \left(\frac{\sigma_m}{\sigma_{\max}}\right)^2 + \frac{\sigma_r}{\sigma_e}$$

Ec. de Soderberg

$$\frac{1}{F.S} = \frac{\sigma_{m}}{\sigma_{f}} + \frac{\sigma_{r}}{\sigma_{e}} \qquad (cargas \ axiales)$$

$$\frac{1}{F.S} = \frac{\tau_{\rm m}}{\tau_{\rm s}} + \frac{\tau_{\rm r}}{\tau_{\rm s}} \qquad (torsión)$$

PROYECTO DE FLECHAS

Ecuación para flechas sometidas acargas variables

$$\frac{\sigma_{\rm f}}{F.S} = \frac{32}{\pi D^3} \sqrt{\left(M_{\rm m} + M_{\rm r} \frac{\sigma_{\rm f}}{\sigma_{\rm e}}\right)^2 + \frac{3}{4} \left(M t_{\rm m} + M t_{\rm r} \frac{\tau_{\rm f}}{\tau_{\rm e}}\right)^2}$$

Momentos flexionantes

$$Mm = \frac{Mmx + M \min}{2}$$

$$Mr = \frac{Mmx - M \min}{2}$$

Momentos torsionantes

$$Mtm = \frac{Mtmx + Mt \min}{2}$$
$$Mtr = \frac{Mtmx - Mt \min}{2}$$

Código ASME

$$\tau_{cal} = \frac{16}{\pi D^3} \sqrt{(Cm^*M)^2 + (Ct^*Mt)^2}$$

ENGRANES

$$P_c = \frac{\pi D_p}{N_p} = \frac{\pi D_g}{N_o}$$

$$P = \frac{N_p}{D_p} = \frac{N_g}{D_g}$$

$$P_a * P = \pi$$

$$m = \frac{D_p}{N_p}$$

$$m_{w} = \frac{n_{p}}{n_{g}} = \frac{D_{g}}{D_{p}} = \frac{N_{g}}{D_{p}}$$

$$C = \frac{1}{2P} \left(N_p + N_g \right)$$

$$C = \frac{m}{2} \left(N_p + N_g \right)$$

$$\theta = \cos^{-1} \frac{D_b}{D}$$

$$b = k * P_c$$

$$F_t = \frac{2M_t}{D}$$

Ecuación de Lewis

$$F = \sigma * k * y * \frac{\pi^2}{P^2}$$

$$F = \sigma * k * y * \pi^2 * m^2$$

Ecuación de AGMA

$$F = \frac{12 * \sigma * J * k_{v}}{P^{2} * k_{a} * k_{s}}$$

$$F = \frac{12 * \sigma * J * k_{v} * m^{2}}{k_{a} * k_{s}}$$

<u>Esfuerzo de contacto en un diente</u> (desgaste)

$$\sigma_c = C_p \left(\frac{F_t * k_a * k_s}{k_v * b * D_p * I} \right)^{1/2}$$

Cp=coeficiente elástico=2317.6 $\frac{\text{lb}^{\frac{1}{2}}}{\text{plg}}$ (sistema inglés)

BIBLIOGRAFÍA

1.- Diseño de elementos de máquinas.

Robert L. Mott

Prentice Hall Hispanoamericana . México. 1995.

2.- Diseño y análisis de elementos de máquinas

R. R. Slymaker

Limusa-Wiley. México. 1966.

3.- Diseño en ingeniería mecánica Joseph Edward Shigley y Charles R. Mischke Mc. Graw Hill. México. 1993.

4.- Diseño de máquinas. Teoría y práctica. Aarón D. Deutschman, Walter J. Michels y Charles E. Wilson Ed. CECSA. México. 1987.

5.- Machine designPaul H. BlackO. Eugene Adams Jr.Mc. Graw Hill. Tokio. 1968

6.- Mechanical Behavior of Materials Norman E. Dowling Prentice Hall. New Jersey. 1993.

7.- Diseño de elementos de máquinas Guillermo Aguirre Esponda Ed. Trillas-UNAM. México.1990.

8.- Rodamientos Steyr. Catálogo 277 S Steyr- Daimler- Punch. Austria. 1977.

9.- www.orsbearins.com

10.- www.palmexico.com

11.- www.agma.org

12.- www.asme.org

13.- www.afbma.org